Studies in Mycology No. 59
Aspergillus systematics in the genomic era.
The current status of species recognition and identification in Aspergillus
The species recognition and identification of aspergilli and their teleomorphs is discussed. A historical overview of the taxonomic concepts starting with the monograph of Raper & Fennell (1965) is given. A list of taxa described since 2000 is provided. Physiological characters, particularly growth rates and the production of extrolites, often show differences that reflect phylogenetic species boundaries and greater emphasis should be placed on extrolite profiles and growth characteristics in species descriptions. Multilocus sequence-based phylogenetic analyses have emerged as the primary tool for inferring phylogenetic species boundaries and relationships within subgenera and sections. A four locus DNA sequence study covering all major lineages in Aspergillus using genealogical concordance theory resulted in a species recognition system that agrees in part with phenotypic studies and reveals the presence of many undescribed species not resolved by phenotype. The use of as much data from as many sources as possible in making taxonomic decisions is advocated. For species identification, DNA barcoding uses a short genetic marker in an organism"s DNA to quickly and easily identify it to a particular species. Partial cytochrome oxidase subunit 1 sequences, which are used for barcoding animal species, were found to have limited value for species identification among black aspergilli. The various possibilities are discussed and at present partial ?-tubulin or calmodulin are the most promising loci for Aspergillus identification. For characterising Aspergillus species one application would be to produce a multilocus phylogeny, with the goal of having a firm understanding of the evolutionary relationships among species across the entire genus. DNA chip technologies are discussed as possibilities for an accurate multilocus barcoding tool for the genus Aspergillus.
What can comparative genomics tell us about species concepts in the genus Aspergillus
Understanding the nature of species" boundaries is a fundamental question in evolutionary biology. The availability of genomes from several species of the genus Aspergillus allows us for the first time to examine the demarcation of fungal species at the whole-genome level. Here, we examine four case studies, two of which involve intraspecific comparisons, whereas the other two deal with interspecific genomic comparisons between closely related species. These four comparisons reveal significant variation in the nature of species boundaries across Aspergillus. For example, comparisons between A. fumigatus and Neosartorya fischeri (the teleomorph of A. fischerianus) and between A. oryzae and A. flavus suggest that measures of sequence similarity and species-specific genes are significantly higher for the A. fumigatus ? N. fischeri pair. Importantly, the values obtained from the comparison between A. oryzae and A. flavus are remarkably similar to those obtained from an intra-specific comparison of A. fumigatus strains, giving support to the proposal that A. oryzae represents a distinct ecotype of A. flavus and not a distinct species. We argue that genomic data can aid Aspergillus taxonomy by serving as a source of novel and unprecedented amounts of comparative data, as a resource for the development of additional diagnostic tools, and finally as a knowledge database about the biological differences between strains and species.
Sexual and vegetative compatibility genes in the aspergilli
Gene flow within populations can occur by sexual and/or parasexual means. Analyses of experimental and in silico work are presented relevant to possible gene flow within the aspergilli. First, the discovery of mating-type (MAT) genes within certain species of Aspergillus is described. The implications for self-fertility, sexuality in supposedly asexual species and possible uses as phylogenetic markers are discussed. Second, the results of data mining for heterokaryon incompatibility (het) and programmed cell death (PCD) related genes in the genomes of two heterokaryon incompatible isolates of the asexual species Aspergillus niger are reported. Het-genes regulate the formation of anastomoses and heterokaryons, may protect resources and prevent the spread of infectious genetic elements. Depending on the het locus involved, hetero-allelism is not tolerated and fusion of genetically different individuals leads to growth inhibition or cell death. The high natural level of heterokaryon incompatibility in A. niger blocks parasexual analysis of the het-genes involved, but in silico experiments in the sequenced genomes allow us to identify putative het-genes. Homologous sequences to known het- and PCD-genes were compared between different sexual and asexual species including different Aspergillus species, Sordariales and the yeast Saccharomyces cerevisiae. Both het- and PCD-genes were well conserved in A. niger. However some point mutations and other small differences between the het-genes in the two A. niger isolates examined may hint to functions in heterokaryon incompatibility reactions. .
Secondary metabolite profiling_growth profiles and other tools for species recognition and important Aspergillus mycotoxins
Species in the genus Aspergillus have been classified primarily based on morphological features. Sequencing of house-hold genes has also been used in Aspergillus taxonomy and phylogeny, while extrolites and physiological features have been used less frequently. Three independent ways of classifying and identifying aspergilli appear to be applicable: Morphology combined with physiology and nutritional features, secondary metabolite profiling and DNA sequencing. These three ways of identifying Aspergillus species often point to the same species. This consensus approach can be used initially, but if consensus is achieved it is recommended to combine at least two of these independent ways of characterising aspergilli in a polyphasic taxonomy. The chemical combination of secondary metabolites and DNA sequence features has not been explored in taxonomy yet, however. Examples of these different taxonomic approaches will be given for Aspergillus section Nigri. .
Aspergillus species identification in the clinical setting
Multiple recent studies have demonstrated the limited utility of morphological methods used singly for species identification of clinically relevant aspergilli. It is being increasingly recognised that comparative sequence based methods used in conjunction with traditional phenotype based methods can offer better resolution of species within this genus. Recognising the growing role of molecular methods in species recognition, the recently convened international working group meeting entitled ?Aspergillus Systematics in the Genomic Era? has proposed several recommendations that will be useful in such endeavors. Specific recommendations of this working group include the use of the ITS regions for inter section level identification and the ?-tubulin locus for identification of individual species within the various Aspergillus sections. .
Aspergillus strain typing in the genomics era
Multiple reasons may justify a need for strain typing purposes, but the most common reason is to delineate the epidemiological relationships between isolates. The availability of whole genome sequences has greatly influenced our ability to develop highly targeted and efficient strain typing methods fur these purposes. Some strain typing methods may serve dual goals: not only can they be used to discriminate between multiple isolates of a certain species, they can also aid in the recognition, identification, description and validation process of a fungal species. .
Biodiversity of Aspergillus species in some important agricultural products
The genus Aspergillus is one of the most important filamentous fungal genera. Aspergillus species are used in the fermentation industry, but they are also responsible of various plant and food secondary rot, with the consequence of possible accumulation of mycotoxins. The aflatoxin producing A. flavus and A. parasiticus, and ochratoxinogenic A. niger, A. ochraceus and A. carbonarius species are frequently encountered in agricultural products. Studies on the biodiversity of toxigenic Aspergillus species is useful to clarify molecular, ecological and biochemical characteristics of the different species in relation to their different adaptation to environmental and geographical conditions, and to their potential toxigenicity. Here we analyzed the biodiversity of ochratoxin producing species occurring on two important crops: grapes and coffee, and the genetic diversity of A. flavus populations occurring in agricultural fields. Altogether nine different black Aspergillus species can be found on grapes which are often difficult to identify with classical methods. The polyphasic approach used in our studies led to the identification of three new species occurring on grapes: A. brasiliensis, A. ibericus, and A. uvarum. Similar studies on the Aspergillus species occurring on coffee beans have evidenced in the last five years that A. carbonarius is an important source of ochratoxin A in coffee. Four new species within the black aspergilli were also identified in coffee beans: A. sclerotioniger, A. lacticoffeatus, A. sclerotiicarbonarius, and A. aculeatinus. The genetic diversity within A. flavus populations has been widely studied in relation to their potential aflatoxigenicity and morphological variants L- and S-strains. Within A. flavus and other Aspergillus species capable of aflatoxin production, considerable diversity is found. We summarise the main recent achievements in the diversity of the aflatoxin gene cluster in A. flavus populations, A. parasiticus and the non-toxigenic A. oryzae. Studies are needed in order to characterise the aflatoxin biosynthetic genes in the new related taxa A. minisclerotigenes and A. arachidicola. .
Nomenclatural considerations in naming species of Aspergillus and its teleomorphs
The nomenclature of Aspergillus is important in many fields of research and therefore the strategies for stable and efficient naming are important. The conservation of species names as accepted by the Aspergillus community is described. Published lists of accepted names provide that people who use Aspergillus and Penicillium taxonomies need no longer fear the overturning of names currently used. Aspergillus is a good example of a genus where the naming of both anamorph and teleomorph has been applied and arguments are given for maintaining the system of dual nomenclature. A protocol for describing new taxa in Aspergillus and their teleomorphs is proposed, including the availability of living ex type cultures, deposit of type cultures in at least two recognised culture collections, deposits of sequence data in specialised data bases and registration of the new names in MycoBank. .
Polyphasic taxonomy of Aspergillus section Candidi based on molecular_morphological and physiological data.
Aspergillus section Candidi historically included a single white-spored species, A. candidus. Later studies clarified that other species may also belong to this section. In this study, we examined isolates of species tentatively assigned to section Candidi using a polyphasic approach. The characters examined include sequence analysis of partial ?-tubulin, calmodulin and ITS sequences of the isolates, morphological and physiological tests, and examination of the extrolite profiles. Our data indicate that the revised section Candidi includes 4 species: A. candidus, A. campestris, A. taichungensis and A. tritici. This is strongly supported by all the morphological characteristics that are characteristic of section Candidi: slow growing colonies with globose conidial heads having white to yellowish conidia, conidiophores smooth, small conidiophores common, metulae present and covering the entire vesicle, some large Aspergillus heads with large metulae, presence of diminutive heads in all species, conidia smooth or nearly so with a subglobose to ovoid shape, and the presence of sclerotia in three species (A. candidus, A. taichungensis and A. tritici). Aspergillus tritici has been suggested to be the synonym of A. candidus previously, however, sequence data indicate that this is a valid species and includes isolates came from soil, wheat grain, flour and drums from India, Ghana, Sweden, The Netherlands and Hungary, making it a relatively widespread species. All species produce terphenyllins and candidusins and three species (A. candidus, A. campestris and A. tritici) produce chlorflavonins. Xanthoascins have only been found in A. candidus. Each of the species in section Candidi produce several other species specific extrolites, and none of these have been found in any other Aspergillus species. A. candidus has often been listed as a human pathogenic species, but this is unlikely as this species cannot grow at 37 °C. The pathogenic species may be A. tritici or white mutants of Aspergillus flavus. .
Taxonomic revision of Aspergillus section Clavati based on molecular_morphological and physiological data
Aspergillus section Clavati has been revised using morphology, secondary metabolites, physiological characters and DNA sequences. Phylogenetic analysis of ?-tubulin, ITS and calmodulin sequence data indicated that Aspergillus section Clavati includes 6 species, A. clavatus (synonyms: A. apicalis, A. pallidus), A. giganteus, A. rhizopodus, A. longivesica, Neocarpenteles acanthosporus and A. clavatonanicus. Neocarpenteles acanthosporus is the only known teleomorph of this section. The sister genera to Neocarpenteles are Neosartorya and Dichotomomyces based on sequence data. Species in Neosartorya and Neocarpenteles have anamorphs with green conidia and share the production of tryptoquivalins, while Dichotomomyces was found to be able to produce gliotoxin, which is also produced by some Neosartorya species, and tryptoquivalines and tryptoquivalones produced by members of both section Clavati and Fumigati. All species in section Clavati are alkalitolerant and acidotolerant and they all have clavate conidial heads. Many species are coprophilic and produce the effective antibiotic patulin. Members of section Clavati also produce antafumicin, tryptoquivalines, cytochalasins, sarcins, dehydrocarolic acid and kotanins (orlandin, desmethylkotanin and kotanin) in species specific combinations. Another species previously assigned to section Clavati, A. ingratus is considered a synonym of Hemicarpenteles paradoxus, which is phylogenetically very distantly related to Neocarpenteles and section Clavati. .
Polyphasic taxonomy of Aspergillus section Usti
Aspergillus ustus is a very common species in foods, soil and indoor environments. Based on chemical, molecular and morphological data, A. insuetus is separated from A. ustus and revived. A. insuetus differs from A. ustus in producing drimans and ophiobolin G and H and not producing ustic acid and austocystins. The molecular, physiological and morphological data also indicated that another species, A. keveii sp. nov. is closely related but distinct from A. insuetus. Aspergillus section Usti sensu stricto includes 8 species: A. ustus, A. puniceus, A. granulosus, A. pseudodeflectus, A. calidoustus, A. insuetus and A. keveii together with Emericella heterothallica. .
Diagnostic tools to identify black aspergilli
The present taxonomy of the black aspergilli reveals that there are 19 accepted taxa. However the identification of species of Aspergillus section Nigri is often problematic in spite of the existence of numerous methods proposed. An overview is provided of phenotypic and molecular methods to identify the accepted species of the black aspergilli. Colony morphology, conidial size and ornamentation of the ex type cultures is presented in a pictorial overview. The temperature range of all species is given and their growth characteristics on creatine agar and boscalid agar, a medium which was developed as a selective medium for the isolation of A. carbonarius are also shown. The extrolites produced by each species are listed while the response of the Ehrlich reaction is described. The literature on the various molecular methods to be used for species identification is reviewed and a critical evaluation of the usefulness of various techniques and genomic loci for species identification of black aspergilli is presented. .
Polyphasic taxonomy of Aspergillus section Fumigati and its teleomorph Neosartorya
The taxonomy of Aspergillus section Fumigati with its teleomorph genus Neosartorya is revised. The species concept is based on phenotypic (morphology and extrolite profiles) and molecular (?-tubulin and calmodulin gene sequences) characters in a polyphasic approach. Four new taxa are proposed: N. australensis N. ferenczii, N. papuaensis and N. warcupii. All newly described and accepted species are illustrated. The section consists of 33 taxa: 10 strictly anamorphic Aspergillus species and 23 Neosartorya species. Four other Neosartorya species described previously were not available for this monograph, and consequently are relegated to the category of doubtful species.